Flexiv RDK APIs  0.10
intermediate3_realtime_joint_floating.cpp

This tutorial runs real-time joint floating with gentle velocity damping, gravity compensation, and soft protection against position limits. This example is ideal for verifying the system's whole-loop real-timeliness, accuracy of the robot dynamics model, and joint torque control performance. If everything works well, all joints should float smoothly.

Author
Flexiv
#include <flexiv/Robot.hpp>
#include <flexiv/Log.hpp>
#include <iostream>
#include <string>
#include <thread>
#include <atomic>
namespace {
const std::vector<double> k_floatingDamping = {10.0, 10.0, 5.0, 5.0, 1.0, 1.0, 1.0};
std::atomic<bool> g_schedStop = {false};
}
void printDescription()
{
std::cout << "This tutorial runs real-time joint floating with gentle velocity damping, "
"gravity compensation, and soft protection against position limits. This example "
"is ideal for verifying the system's whole-loop real-timeliness, accuracy of the "
"robot dynamics model, and joint torque control performance. If everything works "
"well, all joints should float smoothly."
<< std::endl
<< std::endl;
}
void printHelp()
{
// clang-format off
std::cout << "Required arguments: [robot IP] [local IP]" << std::endl;
std::cout << " robot IP: address of the robot server" << std::endl;
std::cout << " local IP: address of this PC" << std::endl;
std::cout << "Optional arguments: None" << std::endl;
std::cout << std::endl;
// clang-format on
}
void periodicTask(flexiv::Robot& robot, flexiv::Log& log, flexiv::RobotStates& robotStates)
{
try {
// Monitor fault on robot server
if (robot.isFault()) {
"periodicTask: Fault occurred on robot server, exiting ...");
}
// Read robot states
robot.getRobotStates(robotStates);
// Robot degrees of freedom
size_t robotDOF = robotStates.tau.size();
// Set 0 joint torques
std::vector<double> targetTorque(robotDOF, 0.0);
// Add some velocity damping
for (size_t i = 0; i < robotDOF; ++i) {
targetTorque[i] += -k_floatingDamping[i] * robotStates.dtheta[i];
}
// Send target joint torque to RDK server, enable gravity compensation
// and joint limits soft protection
robot.streamJointTorque(targetTorque, true, true);
} catch (const flexiv::Exception& e) {
log.error(e.what());
g_schedStop = true;
}
}
int main(int argc, char* argv[])
{
// Program Setup
// =============================================================================================
// Logger for printing message with timestamp and coloring
// Parse parameters
if (argc < 3 || flexiv::utility::programArgsExistAny(argc, argv, {"-h", "--help"})) {
printHelp();
return 1;
}
// IP of the robot server
std::string robotIP = argv[1];
// IP of the workstation PC running this program
std::string localIP = argv[2];
// Print description
log.info("Tutorial description:");
printDescription();
try {
// RDK Initialization
// =========================================================================================
// Instantiate robot interface
flexiv::Robot robot(robotIP, localIP);
// Create data struct for storing robot states
flexiv::RobotStates robotStates;
// Clear fault on robot server if any
if (robot.isFault()) {
log.warn("Fault occurred on robot server, trying to clear ...");
// Try to clear the fault
robot.clearFault();
std::this_thread::sleep_for(std::chrono::seconds(2));
// Check again
if (robot.isFault()) {
log.error("Fault cannot be cleared, exiting ...");
return 1;
}
log.info("Fault on robot server is cleared");
}
// Enable the robot, make sure the E-stop is released before enabling
log.info("Enabling robot ...");
robot.enable();
// Wait for the robot to become operational
while (!robot.isOperational()) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
log.info("Robot is now operational");
// Move robot to home pose
log.info("Moving to home pose");
robot.setMode(flexiv::Mode::NRT_PRIMITIVE_EXECUTION);
robot.executePrimitive("Home()");
// Wait for the primitive to finish
while (robot.isBusy()) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
// Real-time Joint Floating
// =========================================================================================
// Switch to real-time joint torque control mode
robot.setMode(flexiv::Mode::RT_JOINT_TORQUE);
// Create real-time scheduler to run periodic tasks
flexiv::Scheduler scheduler;
// Add periodic task with 1ms interval and highest applicable priority
scheduler.addTask(
std::bind(periodicTask, std::ref(robot), std::ref(log), std::ref(robotStates)),
"HP periodic", 1, scheduler.maxPriority());
// Start all added tasks
scheduler.start();
// Block and wait for signal to stop scheduler tasks
while (!g_schedStop) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
// Received signal to stop scheduler tasks
scheduler.stop();
// Wait a bit for any last-second robot log message to arrive and get printed
std::this_thread::sleep_for(std::chrono::seconds(2));
} catch (const flexiv::Exception& e) {
log.error(e.what());
return 1;
}
return 0;
}
Base class for all custom runtime exception classes.
Definition: Exception.hpp:18
Helper functions to print messages with timestamp and coloring. Logging raw data to csv file coming s...
Definition: Log.hpp:19
void warn(const std::string &message) const
[Non-blocking] Print warning message with timestamp and coloring.
void info(const std::string &message) const
[Non-blocking] Print info message with timestamp and coloring.
void error(const std::string &message) const
[Non-blocking] Print error message with timestamp and coloring.
Main interface with the robot, containing several function categories and background services.
Definition: Robot.hpp:25
void clearFault(void)
[Blocking] Clear minor fault of the robot.
void executePrimitive(const std::string &ptCmd)
[Blocking] Execute a primitive by specifying its name and parameters, which can be found in the Flexi...
void getRobotStates(RobotStates &output)
[Non-blocking] Get the latest robot states.
bool isFault(void) const
[Non-blocking] Check if the robot is in fault state.
void setMode(Mode mode)
[Blocking] Set a new control mode to the robot and wait until the mode transition is finished.
void streamJointTorque(const std::vector< double > &torques, bool enableGravityComp=true, bool enableSoftLimits=true)
[Non-blocking] Continuously stream joint torque command to the robot.
bool isBusy(void) const
[Non-blocking] Check if the robot is currently executing a task. This includes any user commanded ope...
void enable(void)
[Blocking] Enable the robot, if E-stop is released and there's no fault, the robot will release brake...
bool isOperational(bool verbose=true) const
[Non-blocking] Check if the robot is normally operational, which requires the following conditions to...
Real-time scheduler that can simultaneously run multiple periodic tasks. Parameters for each task are...
Definition: Scheduler.hpp:21
void stop()
[Blocking] Stop all added tasks. The periodic execution will stop and all task threads will be closed...
void addTask(std::function< void(void)> &&callback, const std::string &taskName, int interval, int priority, int cpuAffinity=-1)
[Non-blocking] Add a new periodic task to the scheduler's task pool. Each task in the pool is assigne...
void start()
[Blocking] Start all added tasks. A dedicated thread will be created for each added task and the peri...
int maxPriority() const
[Non-blocking] Get maximum available priority for user tasks.
Thrown if the robot server is not operational or has fault.
Definition: Exception.hpp:49
Data struct containing the joint- and Cartesian-space robot states.
Definition: Data.hpp:78
std::vector< double > dtheta
Definition: Data.hpp:107
std::vector< double > tau
Definition: Data.hpp:113