Flexiv RDK APIs  0.10
intermediate2_realtime_joint_torque_control.cpp

This tutorial runs real-time joint torque control to hold or sine-sweep all robot joints. An outer position loop is used to generate joint torque commands. This outer position loop + inner torque loop together is also known as an impedance controller.

Author
Flexiv
#include <flexiv/Robot.hpp>
#include <flexiv/Log.hpp>
#include <iostream>
#include <string>
#include <cmath>
#include <thread>
#include <atomic>
namespace {
constexpr double k_loopPeriod = 0.001;
const std::vector<double> k_impedanceKp = {3000.0, 3000.0, 800.0, 800.0, 200.0, 200.0, 200.0};
const std::vector<double> k_impedanceKd = {80.0, 80.0, 40.0, 40.0, 8.0, 8.0, 8.0};
constexpr double k_sineAmp = 0.035;
constexpr double k_sineFreq = 0.3;
std::atomic<bool> g_schedStop = {false};
}
void printDescription()
{
std::cout
<< "This tutorial runs real-time joint torque control to hold or sine-sweep all robot "
"joints. An outer position loop is used to generate joint torque commands. This outer "
"position loop + inner torque loop together is also known as an impedance controller."
<< std::endl
<< std::endl;
}
void printHelp()
{
// clang-format off
std::cout << "Required arguments: [robot IP] [local IP]" << std::endl;
std::cout << " robot IP: address of the robot server" << std::endl;
std::cout << " local IP: address of this PC" << std::endl;
std::cout << "Optional arguments: [--hold]" << std::endl;
std::cout << " --hold: robot holds current joint positions, otherwise do a sine-sweep" << std::endl;
std::cout << std::endl;
// clang-format on
}
void periodicTask(flexiv::Robot& robot, flexiv::Log& log, flexiv::RobotStates& robotStates,
const std::string& motionType, const std::vector<double>& initPos)
{
// Local periodic loop counter
static unsigned int loopCounter = 0;
try {
// Monitor fault on robot server
if (robot.isFault()) {
"periodicTask: Fault occurred on robot server, exiting ...");
}
// Read robot states
robot.getRobotStates(robotStates);
// Robot degrees of freedom
size_t robotDOF = robotStates.q.size();
// Target joint positions
std::vector<double> targetPos(robotDOF, 0);
// Set target position based on motion type
if (motionType == "hold") {
targetPos = initPos;
} else if (motionType == "sine-sweep") {
for (size_t i = 0; i < robotDOF; ++i) {
targetPos[i]
= initPos[i]
+ k_sineAmp * sin(2 * M_PI * k_sineFreq * loopCounter * k_loopPeriod);
}
} else {
"periodicTask: unknown motion type. Accepted motion types: hold, sine-sweep");
}
// Run impedance control on all joints
std::vector<double> targetTorque(robotDOF);
for (size_t i = 0; i < robotDOF; ++i) {
targetTorque[i] = k_impedanceKp[i] * (targetPos[i] - robotStates.q[i])
- k_impedanceKd[i] * robotStates.dtheta[i];
}
// Send target joint torque to RDK server
robot.streamJointTorque(targetTorque, true);
loopCounter++;
} catch (const flexiv::Exception& e) {
log.error(e.what());
g_schedStop = true;
}
}
int main(int argc, char* argv[])
{
// Program Setup
// =============================================================================================
// Logger for printing message with timestamp and coloring
// Parse parameters
if (argc < 3 || flexiv::utility::programArgsExistAny(argc, argv, {"-h", "--help"})) {
printHelp();
return 1;
}
// IP of the robot server
std::string robotIP = argv[1];
// IP of the workstation PC running this program
std::string localIP = argv[2];
// Print description
log.info("Tutorial description:");
printDescription();
// Type of motion specified by user
std::string motionType = "";
if (flexiv::utility::programArgsExist(argc, argv, "--hold")) {
log.info("Robot holding current pose");
motionType = "hold";
} else {
log.info("Robot running joint sine-sweep");
motionType = "sine-sweep";
}
try {
// RDK Initialization
// =========================================================================================
// Instantiate robot interface
flexiv::Robot robot(robotIP, localIP);
// Create data struct for storing robot states
flexiv::RobotStates robotStates;
// Clear fault on robot server if any
if (robot.isFault()) {
log.warn("Fault occurred on robot server, trying to clear ...");
// Try to clear the fault
robot.clearFault();
std::this_thread::sleep_for(std::chrono::seconds(2));
// Check again
if (robot.isFault()) {
log.error("Fault cannot be cleared, exiting ...");
return 1;
}
log.info("Fault on robot server is cleared");
}
// Enable the robot, make sure the E-stop is released before enabling
log.info("Enabling robot ...");
robot.enable();
// Wait for the robot to become operational
while (!robot.isOperational()) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
log.info("Robot is now operational");
// Move robot to home pose
log.info("Moving to home pose");
robot.setMode(flexiv::Mode::NRT_PRIMITIVE_EXECUTION);
robot.executePrimitive("Home()");
// Wait for the primitive to finish
while (robot.isBusy()) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
// Real-time Joint Torque Control
// =========================================================================================
// Switch to real-time joint torque control mode
robot.setMode(flexiv::Mode::RT_JOINT_TORQUE);
// Set initial joint positions
robot.getRobotStates(robotStates);
auto initPos = robotStates.q;
log.info("Initial joint positions set to: " + flexiv::utility::vec2Str(initPos));
// Create real-time scheduler to run periodic tasks
flexiv::Scheduler scheduler;
// Add periodic task with 1ms interval and highest applicable priority
scheduler.addTask(std::bind(periodicTask, std::ref(robot), std::ref(log),
std::ref(robotStates), std::ref(motionType), std::ref(initPos)),
"HP periodic", 1, scheduler.maxPriority());
// Start all added tasks
scheduler.start();
// Block and wait for signal to stop scheduler tasks
while (!g_schedStop) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
// Received signal to stop scheduler tasks
scheduler.stop();
// Wait a bit for any last-second robot log message to arrive and get printed
std::this_thread::sleep_for(std::chrono::seconds(2));
} catch (const flexiv::Exception& e) {
log.error(e.what());
return 1;
}
return 0;
}
Base class for all custom runtime exception classes.
Definition: Exception.hpp:18
Thrown if the user input is not valid.
Definition: Exception.hpp:69
Helper functions to print messages with timestamp and coloring. Logging raw data to csv file coming s...
Definition: Log.hpp:19
void warn(const std::string &message) const
[Non-blocking] Print warning message with timestamp and coloring.
void info(const std::string &message) const
[Non-blocking] Print info message with timestamp and coloring.
void error(const std::string &message) const
[Non-blocking] Print error message with timestamp and coloring.
Main interface with the robot, containing several function categories and background services.
Definition: Robot.hpp:25
void clearFault(void)
[Blocking] Clear minor fault of the robot.
void executePrimitive(const std::string &ptCmd)
[Blocking] Execute a primitive by specifying its name and parameters, which can be found in the Flexi...
void getRobotStates(RobotStates &output)
[Non-blocking] Get the latest robot states.
bool isFault(void) const
[Non-blocking] Check if the robot is in fault state.
void setMode(Mode mode)
[Blocking] Set a new control mode to the robot and wait until the mode transition is finished.
void streamJointTorque(const std::vector< double > &torques, bool enableGravityComp=true, bool enableSoftLimits=true)
[Non-blocking] Continuously stream joint torque command to the robot.
bool isBusy(void) const
[Non-blocking] Check if the robot is currently executing a task. This includes any user commanded ope...
void enable(void)
[Blocking] Enable the robot, if E-stop is released and there's no fault, the robot will release brake...
bool isOperational(bool verbose=true) const
[Non-blocking] Check if the robot is normally operational, which requires the following conditions to...
Real-time scheduler that can simultaneously run multiple periodic tasks. Parameters for each task are...
Definition: Scheduler.hpp:21
void stop()
[Blocking] Stop all added tasks. The periodic execution will stop and all task threads will be closed...
void addTask(std::function< void(void)> &&callback, const std::string &taskName, int interval, int priority, int cpuAffinity=-1)
[Non-blocking] Add a new periodic task to the scheduler's task pool. Each task in the pool is assigne...
void start()
[Blocking] Start all added tasks. A dedicated thread will be created for each added task and the peri...
int maxPriority() const
[Non-blocking] Get maximum available priority for user tasks.
Thrown if the robot server is not operational or has fault.
Definition: Exception.hpp:49
Data struct containing the joint- and Cartesian-space robot states.
Definition: Data.hpp:78
std::vector< double > q
Definition: Data.hpp:84
std::vector< double > dtheta
Definition: Data.hpp:107